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An alternative approach to the solution of the two-center electronic Schrodinger 
equation involving a finite-difference Newton-Raphson algorithm is described. The 
usual separation in confocal elliptical coordinates is employed leading to two coupled 
one-dimensional differential equations with split boundary conditions. The corresponding 
set of finite-difference equations, including the energy eigenvalue, separation constant, 
boundary conditions, and normalization conditions, are incorporated into a large 
system of nonlinear algebraic equations which is solved by means of a generalized 
Newton-Raphson iteration. The present algorithm is relatively simple and flexible. 
Solutions at one value of the nuclear separation can be easily tracked into solutions at 
other values. Also with amodification of the boundary conditions continuum states can be 
obtained as easily as bound states. As examples, calculations of the 2~0, bound state 
and a positive-energy continuum state of H3+ at a separation R = 5.0 AU are presented. 
Through the use of a generalized Richardson extrapolation an accuracy of eight signi- 
ficant figures has been achieved. 

1. INTRODUCTION 

It is well known that the two-center electronic Schriidinger equation separates 
in confocal elliptical coordinates A, I*, 4. This separation is generally attributed 
to Burrau [l], and the standard truncated infinite series method of solving the 
resulting coupled ordinary differential equations with split boundary conditions 
has been widely used [2-61. Very accurate wavefunctions for H,+ are available [6]. 

The usefulness of the single-electron diatomic orbitals as basis functions in 
calculations of stationary electronic states of larger molecules and in calculations 
of atom-atom collisions is another question. Wallis and Hulburt [4] reported 
the difficulties of using the standard diatomic orbitals as basis functions for 
larger diatomic molecules. One of the difficulties is the fact that as the central 
nuclear charges increase the convergence of the infinite series becomes rapidly 
worse. But more importantly, the continuum states, which are generally neglected, 
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may make a significant contribution. This latter difficulty has been overcome 
by Llaguno, Gupta, and Rothstein [7] who used elliptic-type-orbitals (the elliptic 
analogs of Slater-type orbitals) in calculations on Hz+, H, , Hey, and H,+. 

In the present paper a finite-difference Newton-Raphson algorithm is used 
to solve the two-center electronic Schrodinger equation. In a previous paper [8] 
this method has been employed to solve the atomic Hartree-Fock equations. 
In general this algorithm is very powerful in solving sets of coupled ordinary 
differential equations with split boundary conditions. 

With the finite-difference method two-center orbitals can be generated easily 
and quickly for a wide range of nuclear separations and charges. Also, with an 
appropriate change of boundary conditions, positive-energy continuum states 
can be generated as easily as bound states. 

In Section 2 the finite-difference approximation to the two-center Schriidinger 
equation is derived. A generalized Newton-Raphson iterative method for solving 
the system of finite-difference equations is presented in Section 3 and in Section 4 
the results of two example calculations are presented, one of which is a continuum 
state. 

2. FINITE-DIFFERENCE APPROXIMATION TO SCHR~DINGER’S EQUATION 

The two-center electronic wavefunction with nuclear charges 2, and Zb separated 
by a distance R can be rigorously factored into the form 

z) = L(h) M(p)(eimd/(27r)““), m = 0, &I,..., (1) 

where h, CL, and I$ are the usual confocal elliptical coordinates 

(A = (r, + d/R P = (r, - d/R). 

The functions L and M are solutions of 

[ $ (AZ - 1) $ + A + y + R(Z, + Z,) X - A] L(h) = 0, 

and 

[ 
2 (1 - p2) $ - A - F - R(Z, - Z,) p - 1 mPp2 ] M(,u) = 0, 

-1 < p ,< +1. (3) 

Equations (2) and (3) are to be solved subject to the following conditions. 
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(i) boundary conditions: L( co) = 0 and L(l), M( - l), and M( + 1) must be 
finite. (4) 

(ii) normalization conditions: 

$ j L2M2(A2 - p”) dh dp = 1, (5) 

i M2dp = 1. (6) 

The condition (6) is required in order to determine L and M uniquely, because 
(2) and (3) are homogeneous and (5) alone is satisfied by all functions L’ = aL, 
M’ = (l/a) M, where cx is an arbitrary constant. 

We proceed now to determine finite-difference equations which are approx- 
imations to the differential equations and normalization conditions, (2), (3), (5), 
and (6). The boundary conditions (4), however, are not in a form that can be 
treated easily, and it is useful first to make the following transformations, originally 
used by Jaffe [2]: 

x = (ha - 1) L, (7) 

Y = (1 - /.G) M, (8) 

5 = (A - 1)/(X + 11, O<[<l. (9) 

In terms of the 5 and p independent variables the differential equations (2) and (3) 
become 

[ .$l - 02 $ - (1 + 2f - 3!!3 $ + A + F (%) 

+ R(Z, + Z,) (a) - m2(14; @” + qq X(6) = 0, (10) 

[ 
(1 wi - a P 

m2 
-w+ 2:' T;2z)] Y(p) = 0, 

while the normalization conditions (5) and (6) become 

(11) 

1 = 0, (12) 
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and 

s yw (1 - P2Y dp - 1 = 0. (13) 

The two-point boundary conditions on X(t) and Y(p) are now simply 

X(0) = X(1) = 0, (14) 

Y(-1) = Y(1) = 0. (15) 

These transformations (7), (8) and (9) offer the following advantages. The range 
of the new variable 5 is finite (O-l) and can be spanned by a finite mesh of equally 
spaced points. Also, the new boundary conditions (14) and (15) are easily 
incorporated into a system of finite-difference equations. Furthermore, a constant 
density of mesh points in .$ corresponds to a greater density in h in the important 
region close to the internuclear axis, as opposed to the less important region far out. 

We now translate the new system of equations (10) through (15) into finite- 
difference form. The 5 axis between [ = 0 and 5 = I is divided by a mesh of 
NI - 1 evenly spaced internal points, and the interval between points is h, = l/N, . 
Likewise the p axis between p = - 1 and p = + 1 is divided by a mesh of NZ - 1 
evenly spaced internal points, giving an interval of h, = 2/N, . The following 
notation will be used: 

51, = kh, , k = 0, I ,..., Nl , 

Xk = Jwk), 

pk= -1 fkh,, k = 0, l,..., N, , 

yk = y(pkc). 

(161 

A first-order approximation to the derivatives in (10) and (11) is used. Explicitly 
at mesh point k, 

dX 
__ = & cxk+, - xk-l), 

dt ek 1 

d2X 
- 
8’ cr 

R3 J$ (x,-l - 2xk + xk+l), 

07) 

and the same approximations are used for derivatives of Y. The integrals (12) 
and (13) are approximated by trapezoidal rule which is entirely consistent with 
the first-order approximations of the derivatives. 

Writing the finite-difference approximation to (10) and (11) at each internal 
mesh point we have the following set of equations: 
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[ 
ER2 1 + kh 2 - 2(1 ikhl)’ +A++1 -kh’) +R(z.+zb)(; -+z) 

1 1 1 

- nz2(1 - kh,)2 + 1 + k2h12 
4kh, kh, 1 x 

k 
+ k(1 - kh,)2 (x _ _ x 

h, 
k 1 k+l 

) 

+ (1 - 2% + 3k2h2) (x _ _ x 

2h 
k 1 

> = o 
k+l 3 k = l,..., NI - 1, (18) 

[ - 
2k(2 - kh,) _ A _ ER2 

h, 
2 (kh, - 1)” - R(Z, - Z,)(kh, - 1) 

m2 - 
kh,(2 - kh,) + 

2(2 - 2kh, + k2h22) 1 rk + k(2 ; khJ 
kh,(2 - kh,) 2 

x (Y&l - yk+l) - (kh2h- ‘) (yk-1 - yk+l) = O, 
2 

k = l,..., iv2 - 1. (19) 

The normalization conditions (12) and (13) are approximated by 

’ N1-1 N2-1 KU + jW(l - jhlNz - W2 - U21 (1 - jh$ x.2y 2 _ 1 = o 
j2h,k2h2(2 - kh2)2 3 k 

i20) 

N,-I 
yk2 

k& k2h,(2 - kh2)2 - ’ = ” (21) 

while the boundary conditions (14) and (15) translate into 

& = ik-&,, = 0 

and 

Y,, = YN, = 0. 

(22) 

(23) 

These equations (18)-(23) are a set of nonlinear algebraic equations in the 
unknowns X, (k = 0 ,..., IV,), Yk (k = 0 ,..., N,), the energy E, and the separation 
constant A. In the next section we give a practical method for solving this system. 

3. METHOD OF SOLUTION 

The finite-difference system comprises IV1 + N, + 4 equations in as many 
unknowns. We can immediately substitute the boundary conditions (22) and (23) 
into equations (18) and (19) for k = 1 and IV1 - 1 and k = 1 and IV, - 1 
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respectively. In so doing we have reduced the order of our system of equations 
(and unknowns) by 4, and the two-point boundary conditions (22) and (23) 
will be automatically satisfied. 

Before introducing a Newton-Raphson algorithm for solving the system, 
it is most convenient to alter the notation slightly. It is desirable to think of all 
the unknowns, the X, , Y, , E and A, on equal footing. With this goal in mind 
we make the following definitions: 

X kiNI- = Y k 3 k = l,..., N, - 1, (24) 

X NI+N2-1 = - A, (25) 

X %+Nz = E. (26) 

We note in passing that the definition (24) (k = 1) has nothing whatsoever to do 
with the boundary condition (22). XN1 has been discarded from the list of unknowns, 
and we are merely reusing the symbol. 

Now that we have all the unknowns notationally on the same footing, we 
simply number the equations 1 to N1 + NZ , first taking (18) (k = I,..., Nl - l), 
then (19) (i% = I,..., N, - I), and finally (20) and (21). In the revised notation 
this system can be represented formally as 

fk(xlx, **’ xN,+N,) = 0, k = l,..., N1 + N, , (27) 

where the equations for k < N1 - 1 represent (18), those for Nr < k < Nl + Nz - 2 
represent (19), and k = N1 + NZ - 1 corresponds to (21) and k = Nl + N, to (20). 

The equations (27) are a set of nonlinear algebraic equations, and, starting 
with an initial approximation, can be solved by means of a generalized Newton- 
Raphson iterative method [8]. Let Xtn) = (Xi%) *.a X,$$z) be a vector whose 
components are the values of the unknowns in (27) at the nth iteration, and also 
define F(“) = (fi(X(n)),...,fN1+Ne(X(n))). Th en at the (n + I)th iteration the solution 
vector is given in terms of values at the nth iteration by 

XWz+l) = X(n) _ (J(n))-1 F(n), (28) 

where J is a Jacobian matrix, the elements of which are 

The iteration (28) is repeated until 

max(lf,W))l,..., 1 fNl+N2(X(n))l) < tolerance, (30) 

since when Ffn) = 0 the system of finite-difference equations is solved exactly. 
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A very efficient algorithm for the rapid solution of (28) has been described in a 
previous paper [8]. It is based upon the special form of the Jacobian matrix. 
Because the equations (27) only involve the X’s at neighbouring mesh points 
(Xk-1, Xk 7 and Xk+l), the matrix is sparse and in almost tridiagonal form. 

(31) 

The two nonzero rows and columns in J are due respectively to the presence of all 
the X’s except XN1+,l-, and XN1+,,,, in the last two equations of (27) and the 
presence of XN1+NI-l and XNl+,l in the rest of equations (27). With the J matrix 
of this form (28) can be rapidly solved by means of a partitioning [8]. 

It remains to determine a starting vector X (O) for the algorithm. In the united- 
atom limit (R = 0) the hydrogenic functions (2 = 2, + 2,) solve the problem. 
One starts the molecular calculation, therefore, at small R (but not zero) using a 
hydrogenic wavefunction in finite difference form (in terms of 5 and p) as the 
starting vector X(O). Which one of the molecular eigenstates is converged upon 
depends upon which hydrogenic wavefunction is used (and also the value of m 
in (18) and (19)). To obtain the solution for all values of R a tracking procedure 
is employed where the converged solution for one value of R is used as a starting 
vector for a larger value of R. Since in general one is interested in the electronic 
energy as a function of R the whole tracking procedure provides useful information. 

4. RESULTS OF CALCULATIONS 

To illustrate the accuracy and practicality of the algorithm just described 
we present the results of two example calculations. The first is the 2.~0, state 
of H,+ (2, = Zb = 1) and the second is a ug continuum state of H,+. 

Of course for any finite values of h, and h, we have only an approximate solution 
of Schriidinger’s equation. One can improve the accuracy by taking more mesh 
points, but roundoff error increases with the number of mesh points. Instead 
we make an extrapolation to the h, = h, = 0 limit based on a number of calcu- 
lations at different finite values of h, and h, . The result is a two-dimensional 
generalization of Richardson h2 extrapolation [9]. 
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Let @ denote any scalar quantity (or more generally an element of a tensor) 
which depends upon one or more of the finite difference solutions of Schrodinger’s 
equation. For example @ could be the electronic energy, the separation constant, 
or a matrix element of any tensor operator. Considering @ to be a continuous 
function of the mesh spacings h, and h, , we expand it in Taylor series about the 
point h, = h, = 0. However, since inverting the coordinate system, corresponding 
to h,+ --h, and h, ---f --h,, cannot change the resulting value of @, we can 
omit all terms in the expansion containing odd powers of h, and/or h, . To sixth 
order, therefore, we have 

@(h,h,) = a, + a,h12 + a,h,2 + a4h14 + a,h,4 + a,h,2h,2 

+ a,h,6 + a,h26 + a,h,2h24 + a,,h,4h22 + ..*, (32) 

where a, = @(O, 0), a2 = 32@/iYz,2 I,, , etc. For an order h2 extrapolation we need 
three points, for h4 six, for h6 ten, etc. 

Define the vectors Cp -I (@(h~“h~‘), @(h~)/~~~)),...), where (/jr), hf)) are different 
sets of values of h, and h, , and A z (a, , a2 ,... ), the dimension of the vectors 
depending upon the order of the extrapolation. Then 

A = H-W, (33) 

where the ith row of the H matrix is (1, h:i)‘, hr)*,...). The first element of the 
A vector is the extrapolated value of @. The remaining elements of A are useful 
in ascertaining the reliability of the extrapolation. 

We have carried out a series of h2, h4, and h6 extrapolations on the energy of 
the 2~0, state of H,+ at R = 5.0 AU, and the results are presented in Table I 
in the form of a generalized Neville table [lo]. In the table the first two columns 
give the values of h, and h, , respectively, while the third column gives the corre- 
sponding value of the energy. The fourth column gives the first-order extrapolants, 
each based upon three points, including the one opposite the entry in column 3 
and one on either side. The fifth column gives the second-order extrapolants, 
each based upon six points, including the three on either side of the position 
opposite the entry in column 5. Finally the sixth column gives the third-order 
extrapolants, each based upon ten points in the same manner. The internal 
agreement of the various extrapolants gives an indication of the accuracy. Thus 
while the raw data is only accurate to three significant figures the third-order 
extrapolants are accurate to eight. 

We have also performed these same extrapolations on the energy of a 
u9 continuum state of H,+ at R = 5.0 AU. But before we present these results 
we should explain how these states are obtained, how they can be classified, 
and how they can be used. First, since the continuum states have no exponential 
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TABLE I 

Generalized Neville Table for the Energy of the 2~0, state of H,+ at R = 5.0 AU” 

h, hz 

Zeroth order First order Second order Third order 
extrapolant extrapolant extrapolant extrapolant 

0.01234568 0.02469136 -1.1026582 

0.01234568 0.01652893 -1.1034901 

0.00826446 0.02469136 -1.1017924 

0.01234568 0.01242236 -1.1038203 

0.00621118 0.02469136 -1.1014599 

0.00826446 0.01652893 - 1.1026227 

0.00621118 0.01652893 -1.1022897 

0.00826446 0.01242236 -1.1029524 

0.00684932 0.01315789 -1.1026534 

0.00662252 0.01282051 -1.1026509 

0.00621118 0.01242236 -1.1026191 

- 1.1025967 

-1.1028660 
-1.1026218 

-1.1024840 
-1.1026213 

-1.1025791 
-1.1026213 -1.1026276 

-1.1025312 
-1.1026214 -1.1026276 

-1.1026149 
-1.1026287 

-1.1026146 
-1.1026264 

-1.1026212 

-1.1026217 

(1 Energies are in atomic units (AU). 

tail but oscillate to infinity, it is clear that one cannot hope to represent these 
functions by a finite number of mesh points in the 5 space as defined by (9). 
However, if we truncate our f space such that 0 < 6 < b where b < 1, then 
over this range of 6 a continuum state will have a finite number of oscillations. 
Furthermore, if we change the boundary condition (14) to read 

X(0) = X(b) = 0, b < 1, 

then we can obtain that particular continuum state with a node at 5 = b. 
One might raise the objection that this is not a continuum state but in fact a 

bound state confined to a finite ellipsoidal box. Actually for all positive values 
of energy, there is absolutely no difference between the two wavefunctions. They 
are merely two different ways of looking at the same thing. Over the range 
0 < .$ < b the wavefunction satisfies Schrodinger’s equation with positive energy 
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and a node occurs at the boundary. In fact the parts of the wavefunction of a 
given continuum state in the range from t = 0 out to each successive node at 
( = b, (n = 1, 2,..., cc) are equivalent respectively, within a normalization 
factor, to a sequence of bound states, each successive member of which has been 
compressed to the range 0 < 5 < b, (n = 1, 2,..., cc), where b, approaches 1 
asn+co. 

FIG. 1. Wavefunction of the 3~40.55) continuum state of Hz+ at R = 5.0 AU. 

For example, in Fig. 1 we show a plot of X(t) against [ (0 < 5 < 0.55) for a 
continuum state of positive energy (R! 0.133 AU) which has a node at f = 0.55. 
This state was obtained by compressing the 3sa, bound state into the region 
0 < 5 < 0.55 by means of a tracking procedure. As the state is compressed the 
energy increases from -0.142AU for b = 1 to +0.133 AU when b = 0.55. 
It is interesting to note that in the tracking when the energy is negative X(t) has 
positive curvature near 5 = b which is characteristic of the exponential tail of a 
bound state, but as soon as the energy goes positive the curvature goes to zero at 
5 = b, and this corresponds to the node of a continuum state. In the figure the 
part of the wavefunction out to the second node at e = 0.368 corresponds to 
the 2~0, state compressed to this region, while the part out to the first node 
corresponds to the compressed ISU, state. In general the compressed nsa, state 
corresponds to II oscillations of the continuum state out to 5 = b, . 

Since the continuum is known to make a significant contribution in many 
problems, one would like to employ these continuum states as elements of basis 
sets containing mostly bound states. This can be accomplished with a small and 
controllable error introduced, if b is chosen large enough such that the overlap 
of the continuum states with bound states and with each other in the region 
b < 4 < 1 is small because of the exponential tail of the bound states and the 
rapid oscillations of the continuum states in this region. 

One can classify a continuum state by energy and angular momentum, but 
in view of the application just suggested it might be more useful to associate a 
continuum state with a compressed bound state of equivalent energy while stating 
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TABLE II 

Generalized Neville Table for the Energy of the 3suJO.55) Continuum State of H,* 

at R = 5.0AU” 

h, h, 

Zeroth order 

extrapolant 

First order 

extrapolant 

Second order 

extrapolant 

Third order 

extrapolant 

0.00539216 0.01980198 0.13254956 

0.00450820 0.01652893 0.13266980 

0.00433071 0.01587302 0.13269144 

0.00416667 0.01526718 0.13271070 

0.00387323 0.01418440 0.13274334 

0.00374150 0.01369863 0.13275725 

0.00361842 0.01324503 0.13276983 

0.00350318 0.01282051 0.13278123 

0.00339506 0.01242236 0.13279161 

0.00329341 0.01204819 0.13280107 

0.00319767 0.01169591 0.13280974 

0.13295300 

0.13295326 

0.13295341 

0.13295353 

0.13295364 

0.13295371 

0.13295377 

0.13295383 

0.13295389 

0.13295446 

0.13295449 

0.13295451 0.13295467 

0.13295453 0.13295467 

0.13295455 

0.13295456 

a Energies are in atomic units (AU). 

the region of [ that is being included. In this way the state plotted in Fig. 1 could 
be labelled 3~140.55) where the c stands for compressed. 

Finally in Table II we present the extrapolated energy for the 3s~rJO.55) state 
in the same form as Table I. The accuracy in this case is similar. 

5. CONCLUSIONS 

A relatively simple and efficient finite-difference algorithm for solving the 
two-center Schrbdinger equation has been presented. The resulting energies and 
wavefunctions for Hz+ certainly do not compete with the series method in terms 
of accuracy. (Peek [6] has obtained an accuracy of 1 : 10” with 20 terms in p 
and 16 terms in h). Although greater accuracy could be obtained by going to a 
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higher-order difference formula, nevertheless the eight significant figure accuracy 
achieved with the present first-order approximation is sufficient for most purposes. 

The present algorithm has been used to generate H,+ wavefunctions over a 
range of nuclear separations from near zero out to 50 AU, a solution at one 
separation being rapidly tracked into another. For an optimum distribution 
of mesh points at large separations one can employ a transformation 

h-l f=- 
CA + 1 ’ (35) 

with c > 1 instead of (9). Also single-electron diatomic orbitals have been 
generated for LiH3+ and Lii+ with no deterioration in the convergence properties 
of the algorithm. 

Because of the flexibility and versatility of the algorithm the resulting numerical 
diatomic orbitals should prove to be useful as basis functions in calculations of 
stationary molecular electronic states as well as separation-dependent basis 
functions for atom-atom collisions. 

Note added in proof. The normalization conditions in trapezoidal rule (20) and (21) need 
endpoint corrections to be entirely correct, and these cannot be expressed in a very concise 
manner. For example, the trapezoidal rule approximation (21) would be correct if the integrand 
of (13) went to zero at the endpoints p = f 1. Although Y(-1) = Y(1) = 0, the indeterminate 
form Y(p)/(l - $) = M(p) goes to a finite value at the endpoints. Therefore (21) needs an 
additional term h,(M,Z + M&)/t, but since MO and M N2 are not in the set of finite-difference 
variables this term poses a problem. One solution is to express M0 and MN* in terms of second- 
order Taylor expansions about the first and Nz - 1 mesh points, respectively, using (8) to express 
M and its derivatives in terms of Y and its derivatives, and using (17) to approximate the derivat- 
ives of Y at the first and Na - 1 mesh points. Similar considerations must be brought to bear 
on (20). In particular note that L(h = I) is not necessarily zero. 
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